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The general ized equation of moisture diffusivity in capi l lary-porous  bodies is examined,  and solutions are 
given for different boundary conditions, 

In 1962 A. V. Luikov proposed and substantiated the hypothesis that the propagat ion of heat  and mass in heat  and 
moisture transfer processes in capi l lary-porous  bodies proceed at a f inite rate.  A similar  idea was advanced by P. Vernott 
and C. Cat taneo.  

The author of the hypothesis of a f inite rate of heat  and mass transfer derived the following genera l ized  expression 
for the moisture diffusivity in capi l lary-porous bodies: 

q-~ = - -  },m grad �9 ),,~ Oq~ (1) 
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If it  is reca l led  that  the rate  of cap i l la ry  movement  of liquid w r and the re laxat ion t ime  in hours r r are re la ted  to 
the moisture diffusion Coefficient a m =%m,/'Cm~m by the expression m~ = am/Tr, then Eq. (1) can be rewrit ten in the form 

q,~ : :  - -  k m g r a d  q) - -  1:, dqm,/d ~. (2) 

In (1) and (2) �9 (x, y, z, r) is a function describing the moisture distribution in the body, and "qm is the l iquid flux 
density. 

gquations (1) and (2) were derived by A. V. Luikov starting from the general  principles of the thermodynamics  of 
irreversible processes. 

According to (1), the liquid flux'qm is the sum of two fluxes: that  caused by the presence of a moisture content 
gradient and that  determined by molar  movement  of  l iquid along the capi l la r ies .  

Equation (1) describes alI  the in te rmedia te  processes lying between the two l imi t  cases 

q,~ = - -  k~ g r a d  

and 

q,,, = - - '~,  ~ , r  'v. 

In the first of  these cases the liquid flux is determined only by the molecular  process of  moisture diffusivity (dif-. 
fusion of liquid) under the act ion of a moisture content gradient .  This is the case usually examined in the theory of 

moisture diffusivity. In this case the rate of  propagation of moisture is assumed inf ini te ly  great .  If the ini t ia l  moisture 
content is zero and an instantaneous source of moisture commences  to act ,  then ,  starting from some t ime  r > 0, at any 
point the moisture content of the body is different from zero, i . e . ,  the action of the moisture source is propagated in-  
stantaneously.  In fact, as shown by observation, propagation of moisture in mater ia ls  exposed to wett ing or drying takes 

p l ace  at a cer tain defini te  f ini te  rate .  

This is par t icu lar ly  t ree of mater ia ls  having a porous structure. Therefore,  in analyzing such cases it is necessary 

to proceed from (1). In the second l imi t  case the moisture flux depends only on macroscopic  d isp lacement  under the 

act ion of cap i l l a ry  forces. From the relat ion for this case it follows that ~m = ~0 exp ( - r / r r ) ,  i ,  e . ,  the l iquid flux 

decreases exponent ia l ly  with t ime  from a cer ta in  in i t ia l  value ~0. 

Using (1) or (2), we can obtain a genera l ized  different ial  equation of  moisture diffusivity 
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Introducing the notation 2h = 1 / r  r and a 2 = a m / r  r, we obtain 

0." q) 0 q) 
- - - -  + 2h - -  a z ~7 2 (D. (5) 

O~ 2 O~ 

Below we give the solution for two one-dimensional boundary value problems for the equation of moisture 
difftmvity (5). 

I. We will find the solution of the boundary value problem for the hyperbolic equation of moisture diffusivity 
with boundary conditions of the first and second kind: 

_O]-..(b_ + 2h 0 q) 

0 ~ Ox 

O.- qb 
- -  = a 2. - -  (0 .~ x .% R), (6) 

Ox 2 

el) (x,  O) = Oo = c o n s t ,  (7) 

0 (I) (x, O) = O, (8~ 

0 x  
(I) (0, ~) = ~ .  = c o n s t ,  (9) 

O(I)(R, ~) ~---0. (10) 
Ox 

Since boundary condition (9) is inhomogeneous, the solution of  problem (6)-(10) will be sought in the form of a 
sum �9 = u* + v, where u* is a function satisfying the boundary conditions (9) and (10). 

The function u* can be taken in the form 

u:": = (I) n 2R 2 + (11) 

For determination of the function v it is necessary to solve the inhomogeneous equation 

0.- r) 
- -  q - 2 h - -  
0 ~" 

0v = a Z 0  2v + a 2  c~, (12) 
O x Ox "~ t?'- 

with initial conditions 

and boundary conditions 

v (x, O) --- ~)o - -  u* ,  (1 a) 

Or(x, 0)/0"~ = 0 (14) 

v(O, ~) = O, (3~) 

Ov ( R, .~)lOx = O. (16) 

We will seek a solution of problem (12)-(16) in the form of an expansion in eigenfunctions of the corresponding 
homogeneous problem 

0o 

v ( x ,  x ) = Z T ~ ( ~ ) X n ( x )  ( 0 ~ x ~ <  R).  (17) 

n ~ l  

Functions X n (x) and T n (r) are solutions of the following equations: 

X~ + k X n  --  O, k > O, 0 8 )  

T~ + 2hT'n + ka2Tn . . . .  2a  2 (I)n/~n R.". (19) 

The solution of (18), taking account of boundary conditions (15) and (16), has the form 

x 
Xn (x) = sin ',b, - ~ - ,  (20) 

where 

~ n =  [;k-~ R=(2n--l)v,12 ( n =  I, 2, . . . ) .  (21) 
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The solution of (19) when a ~ e. o [*n/R- ~ h e has the form 

T n ( ~ ) =  , 3 2(P~/~x,,q- exp ( - -  h z) [A~ cos qn T + B,, Silq qn "r], 

where qn 1 / a ~" " " h". = >JR- - -  

(22) 

Taking into account (20) and (22), we rewrite (17) thus: 

oe  

v = , sin ,,% ~ (A~ cos q,., "r -b B~ sin G T) exp ( - -  h T) 
r t ~  1 

2 n} 
~n 

(s.q) 

The arbitrary constants A n and B n are determined from the ini t ia l  conditions (13) and (14). 

Computations give the following values for A n and Bn: 

R 

An 2 q),~ 2 t' x - P,*3 + ~ . ,  (q~o - -  u*) sin I*,~ ~ - -  d.v, 

0 

h 
B~ - A n . 

G 

(24) 

(25) 

The coeff ic ient  A n can be written differently.  Substituting the value of the function u* in the integral  in (24) and 
caerying out the integration,  we find 

Fn ,% J 
(26) 

Taking into consideration that ~ (x, T) = u* @ v(x,  T), and using (23), (25), and (26), after a aumber of  trans- 
formations we obtain the final sotution of the ini t ia l  problem for a s p~ / R 2 > h a in the form 

II. 
with boundary conditions of the second and third kind: 

O~q ) , 2 h O q ) ~ a  2 _  
0 ": 2 ' O ": 

so __ )2+ , ,  [ 
exp ( - -  h1:) __  2._2_ (q)o__qh)  .4- 2 ~ ,  X 

n=l P'n F,, J 

( h ) x (27) 
X cos q,~ r -k sin qn ": sin ~n- -E  

qn 

We will  also examine  the following boundary value problem for the hyperbolic  equation of moisture diffusivity 

82 q) 
(0 ~ x . <  R), (2s) 

0x 2 

r (x, O) = ~, (x), 

ae~(x, o) 
- % ( x ) ,  

8-[ 

aq)(0, -~) _ 0, 
8x 

_ >,,,, a r (R, .-,:) + %,, [ r  r (R, ~)1 = o, 
8x 

q~c = const. 

The solution of this problem takes the form 

�9 (x, ~) = qb c - -  exp ( - -  h ,)  s (A n cos G �9 § B~ sin G ~) cos ~-  

R 

P.n -k sin Ixn cos t~ R 
0 

x 

R 

(29) 

(30) 

(3~.) 

(s2) 

(3s) 

(34) 
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h 
B~ ~- . . . .  A,, q- 

q~ % (i~,, -[- s in Ix~ cos ,%) 

R 

t' x 2 .  f2 (x) cos :.,,, - - -  dx, 
R , . ,  R 

0 

r 

f~ (x)  = r  - -  ?~ (x),  l.., (x)  . . . . .  r ,  (x), cm) 

/ f  '2 2 2 ,~ 

-| ,,*,~ a h" izn a" h2" q , ,  P// R2 , ---R- ~ -  > (:37) 

The numbers Pn are the roots of the characteristic equation 

where 

c t g a = :  B i  ' (38) 

Bi : :  a--~m-R. 

In conclusion, we point out that the solutions given above can be used not only to determine the moisture content 
field and the drying rate for various porous materials, but also to calculate the relaxation t ime r r and the rate of 
moisture transfer w r. 
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